Transient collagen triple helix binding to a key metalloproteinase in invasion and development.
نویسندگان
چکیده
Skeletal development and invasion by tumor cells depends on proteolysis of collagen by the pericellular metalloproteinase MT1-MMP. Its hemopexin-like (HPX) domain binds to collagen substrates to facilitate their digestion. Spin labeling and paramagnetic nuclear magnetic resonance (NMR) detection have revealed how the HPX domain docks to collagen I-derived triple helix. Mutations impairing triple-helical peptidase activity corroborate the interface. Saturation transfer difference NMR suggests rotational averaging around the longitudinal axis of the triple-helical peptide. Part of the interface emerges as unique and potentially targetable for selective inhibition. The triple helix crosses the junction of blades I and II at a 45° angle to the symmetry axis of the HPX domain, placing the scissile Gly∼Ile bond near the HPX domain and shifted ∼25 Å from MMP-1 complexes. This raises the question of the MT1-MMP catalytic domain folding over the triple helix during catalysis, a possibility accommodated by the flexibility between domains suggested by atomic force microscopy images.
منابع مشابه
Targeting collagen strands by photo-triggered triple-helix hybridization.
Collagen remodeling is an integral part of tissue development, maintenance, and regeneration, but excessive remodeling is associated with various pathologic conditions. The ability to target collagens undergoing remodeling could lead to new diagnostics and therapeutics as well as applications in regenerative medicine; however, such collagens are often degraded and denatured, making them difficu...
متن کاملLifelong , self-directed learning and the maintenance of competence: the triple helix of continuing professional development
Abstract It has been proposed that we think of continuing medical education (CME) as a two-stranded helix, in which one strand represents the internal characteristics of the learner-physician, the other strand the culture and environment in which he or she practices and lives. In many countries, the product of these two strands has been increasingly termed ‘continuing professional development’...
متن کاملConformational dynamics accompanying the proteolytic degradation of trimeric collagen I by collagenases.
Collagenases are the principal enzymes responsible for the degradation of collagens during embryonic development, wound healing, and cancer metastasis. However, the mechanism by which these enzymes disrupt the highly chemically and structurally stable collagen triple helix remains incompletely understood. We used a single-molecule magnetic tweezers assay to characterize the cleavage of heterotr...
متن کاملBilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity
Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinc...
متن کاملHistomorphometrical and Histopathological Evaluation of Hedera Helix Alcoholic Extract on Dermal Collagen Bundles
Introduction: Hedera helix is an evergreen plant used in treatment of wounds in the Iranian folk medicine. One of the main stages in wound healing process is, the proliferative phase in which fibroblasts proliferate within the wounds and produce extracellular matrix. Collagen is the main constituent of extracellular matrix. So the aim of this study was to evaluate the effect of Hedera helix alc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2015